12,848 research outputs found

    Japan and the changing global balance of power: The view from the summit

    Get PDF
    This article explores Japan's relative decline and its responses to the changing global balance of power through a case study of one symptom of this shift: the rise of the G20 as the 'premier forum for international economic co-operation' at the expense of the G8. The G8 has traditionally held a significant position in Japan's international relations that appears to be undermined by the rise of the G20. Japan's responses to these developments reveal it to be a status quo power that is still committed to internationalism and multilateralism and looking for a constituency to lead

    A theoretical and semiemprical correction to the long-range dispersion power law of stretched graphite

    Full text link
    In recent years intercalated and pillared graphitic systems have come under increasing scrutiny because of their potential for modern energy technologies. While traditional \emph{ab initio} methods such as the LDA give accurate geometries for graphite they are poorer at predicting physicial properties such as cohesive energies and elastic constants perpendicular to the layers because of the strong dependence on long-range dispersion forces. `Stretching' the layers via pillars or intercalation further highlights these weaknesses. We use the ideas developed by [J. F. Dobson et al, Phys. Rev. Lett. {\bf 96}, 073201 (2006)] as a starting point to show that the asymptotic C3D−3C_3 D^{-3} dependence of the cohesive energy on layer spacing DD in bigraphene is universal to all graphitic systems with evenly spaced layers. At spacings appropriate to intercalates, this differs from and begins to dominate the C4D−4C_4 D^{-4} power law for dispersion that has been widely used previously. The corrected power law (and a calculated C3C_3 coefficient) is then unsuccesfully employed in the semiempirical approach of [M. Hasegawa and K. Nishidate, Phys. Rev. B {\bf 70}, 205431 (2004)] (HN). A modified, physicially motivated semiempirical method including some C4D−4C_4 D^{-4} effects allows the HN method to be used successfully and gives an absolute increase of about 2−32-3% to the predicted cohesive energy, while still maintaining the correct C3D−3C_3 D^{-3} asymptotics

    Cascading Power Outages Propagate Locally in an Influence Graph that is not the Actual Grid Topology

    Get PDF
    In a cascading power transmission outage, component outages propagate non-locally, after one component outages, the next failure may be very distant, both topologically and geographically. As a result, simple models of topological contagion do not accurately represent the propagation of cascades in power systems. However, cascading power outages do follow patterns, some of which are useful in understanding and reducing blackout risk. This paper describes a method by which the data from many cascading failure simulations can be transformed into a graph-based model of influences that provides actionable information about the many ways that cascades propagate in a particular system. The resulting "influence graph" model is Markovian, in that component outage probabilities depend only on the outages that occurred in the prior generation. To validate the model we compare the distribution of cascade sizes resulting from n−2n-2 contingencies in a 28962896 branch test case to cascade sizes in the influence graph. The two distributions are remarkably similar. In addition, we derive an equation with which one can quickly identify modifications to the proposed system that will substantially reduce cascade propagation. With this equation one can quickly identify critical components that can be improved to substantially reduce the risk of large cascading blackouts.Comment: Accepted for publication at the IEEE Transactions on Power System

    Control of crystal polymorph in microfluidics using molluscan 28 kDa Ca2+-binding protein

    Get PDF
    Biominerals produced by biological systems in physiologically relevant environments possess extraordinary properties that are often difficult to replicate under laboratory conditions. Understanding the mechanism that underlies the process of biomineralisation can lead to novel strategies in the development of advanced materials. Using microfluidics, we have demonstrated for the first time, that an extrapallial (EP) 28 kDa protein, located in the extrapallial compartment between mantle and shell of Mytilus edulis, can influence, at both micro- and nanoscopic levels, the morphology, structure and polymorph that is laid down in the shell ultrastructure. Crucially, this influence is predominantly dependent on the existence of an EP protein concentration gradient and its consecutive interaction with Ca2+ ions. Novel lemon-shaped hollow vaterite structures with a clearly defined nanogranular assembly occur only where particular EP protein and Ca2+ gradients co-exist. Computational fluid dynamics enabled the progress of the reaction to be mapped and the influence of concentration gradients across the device to be calculated. Importantly, these findings could not have been observed using conventional bulk mixing methods. Our findings not only provide direct experimental evidence of the potential influence of EP proteins in crystal formation, but also offer a new biomimetic strategy to develop functional biomaterials for applications such as encapsulation and drug delivery

    Alien Registration- Dobson, Samuel H. (Baldwin, Cumberland County)

    Get PDF
    https://digitalmaine.com/alien_docs/33005/thumbnail.jp

    China as G20 Host in 2016: Dawn of Asian Global Leadership?

    Get PDF

    Enhanced dispersion interaction between quasi-one dimensional conducting collinear structures

    Full text link
    Recent investigations have highlighted the failure of a sum of R−6R^{-6} terms to represent the dispersion interaction in parallel metallic, anisotropic, linear or planar nanostructures [J. F. Dobson, A. White, and A. Rubio, Phys. Rev. Lett. 96, 073201 (2006) and references therein]. By applying a simple coupled plasmon approach and using electron hydrodynamics, we numerically evaluate the dispersion (non-contact van der Waals) interaction between two conducting wires in a collinear pointing configuration. This case is compared to that of two insulating wires in an identical geometry, where the dispersion interaction is modelled both within a pairwise summation framework, and by adding a pinning potential to our theory leading to a standard oscillator-type model of insulating dielectric behavior. Our results provide a further example of enhanced dispersion interaction between two conducting nanosystems compared to the case of two insulating ones. Unlike our previous work, this calculation explores a region of relatively close coupling where, although the electronic clouds do not overlap, we are still far from the asymptotic region where a single power law describes the dispersion energy. We find that strong differences in dispersion attraction between metallic and semiconducting / insulating cases persist into this non-asymptotic region. While our theory will need to be supplemented with additional short-ranged terms when the electronic clouds overlap, it does not suffer from the short-distance divergence exhibited by purely asymptotic theories, and gives a natural saturation of the dispersion energy as the wires come into contact.Comment: 10 pages, 5 figures. Added new extended numerical calculations, new figures, extra references and heavily revised tex

    An Atlas Displaying Some Older Water Quality Data for Comparisons with Recent Data

    Get PDF
    This Atlas portrays the \u27trophic status\u27 of Lake Erie, mostly for the early years of monthly monitoring from 1966 to 1986 by ships and staff of Canada\u27s Environment and Fisheries Departments from their Burlington laboratory called the Canada Centre for Inland Waters. The structure or distribution of water temperature is thoroughly displayed, because of its importance in relation to water quality and especially the water-masses of well-mixed character. Secchi transparency was quite variable and had a broad minimum, that is, maximum turbidity, in the 1970\u27s decade. Data for chlorophyll a in the Central Basin during July and August indicated declining valued to 1986, the last year considered. That trend is probably a response to reduced external loading of phosphorus from urban and agricultural areas, which was the goal of the 1972 Great Lakes Water Quality Agreement between the United States and Canada. The author\u27s diagrams of distributions of dissolved oxygen show trends in the vulnerable Central and Eastern hypolimnions. A recovery of dissolved oxygen by 1984 is not revealed. Particulate organic carbon, particulate nitrogen, and particulate phosphorus all declined (up to 1984), confirming the observed changes in the chlorophyll a data. The measurements of \u27total phosphorus\u27 in the water samples showed no change in the mid-summer values up to 1984. The early work by Dr. Julian Williams of the National Water Research Institute, on apatite and related minerals in Lake Erie sediments, could perhaps be extended to the water column. Mineral equilibria could be stabilizing the phosphorus concentrations in some fractions
    • …
    corecore